
Movement 

• up(numBlocks)
• down(numBlocks)	
  
• left(numBlocks)	
  
• right(numBlocks)	
  
• fwd(numBlocks)	
  
• back(numBlocks)	
  
• turn(numTurns)	
  

• numTurns: number of 90 degree turns to 
take, clockwise

Markers 

• chkpt(name)	
  
• saves the current location as a marker called 
name	
  

• move(name)	
  
• moves to the location saved in the marker 

called name

Drawing 

• box(block,	
  width,	
  height,	
  depth)	
  
• box0 will draw a hollow one

• boxa(blockArray,	
  width,	
  height,	
  depth)	
  
• constructs a box by cycling through the blocks in blockArray

• prism(block,	
  width,	
  length)	
  
• draws a prism, which is a good shape for a roof
• the height will be half the length	
  
• prism0 will make a hollow prism

• cylinder(block,	
  radius,	
  height)	
  
• cylinder0	
  will make a hollow one

• blocktype(message,	
  foregroundBlock,	
  backgroundBlock)	
  
• writes message using foregroundBlock	
  filling in gaps with 
backgroundBlock	
  

• sphere(blockType,	
  radius)	
  
• use sphere0 for a hollow sphere

• hemisphere(block,	
  radius,	
  northSouth)	
  
• draw a hemisphere
• northSouth should be “north” or “south”	
  
• hemisphere0 for a hollow one  

• arc({properties})	
  
• The properties object can include a variety of options. radius	
  and 
blockType are required

• radius is the radius of the arc
• blockType is the block ID
• orientation (default: “horizontal”) specifies the orientation of 

the arc (either “vertical” or “horizontal”)
• stack (default: 1) the height or length of the arc
• strokeWidth (default: 1) how many blocks wide the arc is
• fill	
  if true fill in the arc
• quadrants specifies which of the 4 quadrants of a circle to draw 

(the default is to draw all). Pass an object with topleft, topright, 
bottomleft, bottomright set to true for each quadrant to draw.

• rand(blocks,	
  width,	
  height,	
  depth)	
  
• creates a random box of blocks
• blocks can be an array of blocks that have an equal chance of 

being chosen
• blocks can also be an object where the key is a block and the 

value is the “weight” of the block being chosen (a number)

Others 

• times(numTimes)	
  
• repeats the preceding commands numTimes 

(defaults to 2)
• copy(name,	
  width,	
  height,	
  depth)	
  

• copies part of the world to paste elsewhere
• paste(name)	
  

• pastes a previously copied area

THE Merry Squid ScriptCraft Drone Quick Reference



Things 

• door(doorType)	
  
• create a door of doorType (default is wood)
• door_iron	
  is a shortcut for an iron door
• door2 will create a double door
• door2_iron	
  for iron double doors

• bed()	
  
• yep. it places a bed.

• ladder(height)	
  
• creates a ladder height blocks tall

• wallsign(message)	
  
• draws a sign on the wall	
  
• message can be a string or array with string for each line

• signpost(message)	
  
• freestanding sign (see wallsign)

• spiral_stairs(stairBlock,	
  flights)	
  
• stairBlock should be a string (in quotes) from the following list: 
oak,	
  spruce,	
  birch,	
  jungle,	
  cobblestone,	
  brick,	
  stone,	
  
nether,	
  sandstone,	
  quartz	
  

• stairs(block,	
  width,	
  height)	
  
• draw a flight of stairs of type block (should be a block type, but 

must be one of the ones listed for spiral_stairs)

• oak,	
  spruce,	
  birch,	
  jungle	
  
• create a tree

• fort(side,	
  height)	
  
• create a fort with the given dimensions

• castle(side,	
  height)	
  
• creates a castle built of 5 forts	
  

• cottage()	
  
• builds a cozy little home

• temple(side)	
  
• builds a step-style temple with a base of side length per side

• chessboard(whiteblock,	
  blackblock,	
  width,	
  depth)	
  
• create a chessboard-style grid of alternating blocks

• dancefloor(width,	
  depth)	
  
• builds a glowstone and glass dance floor that flashes briefly

• firework()	
  
• launches a firework into the air

• garden(width,	
  depth)	
  
• create a rectangle of random grass and flowers

• maze(width,	
  depth)

THE Merry Squid ScriptCraft Drone Quick Reference

Directions of Things 

• Drone.PLAYER_STAIRS_FACING	
  
• Used to make stairs face the player
• For oak stairs facing the player, use this as the block type: blocks.stairs.oak	
  +	
  “:”	
  +	
  Drone.PLAYER_STAIRS_FACING[d.dir] where d is a 

drone object
• Drone.PLAYER_SIGN_FACING	
  

• Used to place signs, chests, ladders, furnaces and dispensers facing toward the player
• Used in the same way as PLAYER_STAIRS_FACING	
  

• Drone.PLAYER_TORCH_FACING	
  
• Place a torch facing the player rather than just facing up

• If you want to place something facing away from the player, you’d use Drone.PLAYER_STAIRS_FACING[(d.dir	
  +	
  2)	
  %	
  4]


